Polyhedral Finsler spaces with locally unique geodesics
نویسندگان
چکیده
منابع مشابه
Homogeneous geodesics in homogeneous Finsler spaces
In this paper, we study homogeneous geodesics in homogeneous Finsler spaces. We first give a simple criterion that characterizes geodesic vectors. We show that the geodesics on a Lie group, relative to a bi-invariant Finsler metric, are the cosets of the one-parameter subgroups. The existence of infinitely many homogeneous geodesics on compact semi-simple Lie group is established. We introduce ...
متن کاملFinsler bordifications of symmetric and certain locally symmetric spaces
We give a geometric interpretation of the maximal Satake compactification of symmetric spaces X “ G{K of noncompact type, showing that it arises by attaching the horofunction boundary for a suitable G-invariant Finsler metric on X. As an application, we establish the existence of natural bordifications, as orbifolds-with-corners, of locally symmetric spaces X{Γ for arbitrary discrete subgroups ...
متن کاملScattering Matrices and Scattering Geodesics of Locally Symmetric Spaces
Let Γ\X be a Q-rank one locally symmetric space. We describe the frequencies of oscillation of scattering matrices on Γ\X in the energy variable in terms of sojourn times of scattering geodesics. Scattering geodesics are the geodesics which move to infinity in both directions and are distance minimizing near both infinities. The sojourn time of a scattering geodesic is the time it spends in a f...
متن کاملHomogeneous geodesics of left invariant Finsler metrics
In this paper, we study the set of homogeneous geodesics of a leftinvariant Finsler metric on Lie groups. We first give a simple criterion that characterizes geodesic vectors. As an application, we study some geometric properties of bi-invariant Finsler metrics on Lie groups. In particular a necessary and sufficient condition that left-invariant Randers metrics are of Berwald type is given. Fin...
متن کاملGeodesics on Non–complete Finsler Manifolds
In this note based on paper [3] we deal with domains D (i.e. connected open subsets) of a Finsler manifold (M, F ). At first we carry out a comparison between different notions of convexity for their boundaries. Then a careful application of variational methods to the geodesic problem yields that the convexity of ∂D is equivalent to the existence of a minimal geodesic for each pair of points of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2013
ISSN: 0001-8708
DOI: 10.1016/j.aim.2013.07.007